Changes in toughness at low oxygen concentrations in steel weld metals

نویسندگان

  • S. Terashima
  • H. K. D. H. Bhadeshia
چکیده

Oxides in steel weld metals can initiate fracture or can improve toughness by influencing the development of beneficial microstructures. In this work, the authors conducted experiments in which the oxygen concentration was varied from 20 to 560 ppmw (parts per million by weight) in weld metals with tensile strength in the range 580–780 MPa. It is demonstrated that low and medium strength weld metals benefit from oxides up to a concentration of y200 ppmw as consistent with previous research, because acicular ferrite is stimulated in the microstructure. By contrast, oxides are detrimental to the toughness of high strength weld deposits at low oxygen concentrations under 140 ppmw, because the microstructure remains a predominantly martensite and the oxides simply serve to nucleate fracture. In high strength weld metal, therefore, good toughness is achieved even at low oxygen concentration of 20 ppmw O.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Developments with C–Mn–Ni in High Strength Steel Weld Metals — Part B. Mechanical Properties

Microstructure and properties have been studied for high strength steel weld metals with variations in carbon, manganese and nickel. Based on neural network modelling, experimental welds were made using shielded metal arc welding with manganese at 0.5 or 2.0 wt. % and nickel at 7 or 9 wt. %. Additional welds were made where carbon was varied between 0.03 and 0.11 wt. %. Generally there was very...

متن کامل

Influence of C, Mn and Ni Contents on Microstructure and Properties of Strong Steel Weld Metals — Part II. Impact Toughness Gain from Manganese Reductions

Two experimental high strength steel weld metals were produced with 7 wt. % nickel and manganese at 2 or 0.5 wt. %. Neural network predictions that Mn reductions increase toughness were confirmed with impact energy increasing from 32 to 113 J at –40 °C. High resolution microstructural investigations showed that both weld metals contained mainly martensite at interdendritic regions and predomina...

متن کامل

Size distribution of oxides and toughness of steel weld metals

The trend in strong weld metals is towards microstructures dominated by low carbon martensite. The role of oxide particles introduced into the metal during welding then becomes uncertain. The particles do not seem to affect the nucleation or growth of martensite. This is probably because this phase forms at relatively large driving forces and therefore does not rely on heterogeneous nucleation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006